Biological Weapons

Their threat, their control and the need for stakeholder involvement

Jean Pascal Zanders

Political Affairs Officer

United Nations Office for Disarmament Affairs (UNODA), Geneva

Workshop for National Stakeholders

Nadi, Fiji, 25 July 2017
What is biological warfare?

Intentional application against *humans, animals* or *plants* for hostile purposes of

- **Disease-causing micro-organisms** (e.g., bacteria);
- **Other entities that can replicate themselves** (e.g., viruses, infectious nucleic acids and prions);
- **Toxins**, poisonous substances produced by living organisms (and their synthetically manufactured counterparts), including
 - micro-organisms (e.g., botulinum toxin),
 - plants (e.g., ricin derived from castor beans), and
 - animals (e.g., snake venom)
Main prohibitions against BW

- **1925 Geneva Protocol**
 - Prohibits the use in armed conflict of chemical and biological weapons (CBW)

- **1972 Biological and Toxin Weapons Convention (BWC)**
 - Comprehensive ban on development, production and possession of biological weapons (BW) and toxins

- **1993 Chemical Weapons Convention (CWC)**
 - Comprehensive ban on development, production, possession, and use of chemical weapons (CW)
 - The definition of chemical weapon also includes toxins
 - Links up with the BWC
The BW threat spectrum

• War scenarios
• Terrorism
• Criminal acts

• Each will consider and have the availability of different biological or toxin agents, with different degrees of pathogenicity or toxicity
 • Depends on intent
 • Depends on availability
 • Depends on technical skills and structure of the organisation
Alternative uses of biological agents

• **Against humans**
 • Potential for mass casualties exists, but not necessarily most likely scenario as agents difficult to acquire
 • Incapacitation
 • Wider range of agents available
 • Easier to collect from nature and cultivate
 • Delivery uncomplicated
 • Lower requirements for skills and functional specialisation

• **Against animals and plants**
 • Economic impact
 • Agents easier to acquire; less of a risk to perpetrator
 • Easy to deploy
 • Many vulnerabilities in the food chain

• **Economic and societal disruption**
 • Goal is to disrupt functioning of utilities, commercial enterprises, public agencies
 • Wider range of biological agents available
 • Exploitation of fear and lack of adequate preparations
 • Effectiveness of hoaxes
Modern biological weapons and warfare: Confluence of several trends

- **The scientific understanding of disease**
 - Three critical characteristics of disease uncovered in 19th century (Koch postulates):
 - Infectious disease is caused by an agent (pathogen)
 - The agent can be transmitted from one living organism to another (infectiveness)
 - One agent is responsible for one disease only
 - Manipulation of the pathogen
 - Isolation
 - Cultivation (while maintaining its infectiveness)
 - Production in large quantities
 - Effective dissemination

- **The new industrial revolution**
 - Biotechnology & informatics are the driving force
 - Major impact on all aspects of life in developed and developing countries
 - Biotechnology has accelerated development of societies (emerging economies)
 - Convergence with other scientific disciplines (e.g., chemistry, informatics, etc.)

- **Military application of new scientific and technological developments** has become commonplace (= exploitation of ‘dual-use’ potential)
 - Pressures to exploit new biology and biotechnology for military goals will grow
 - Many arguments in favour framed in humanitarian discourse (e.g., so-called non-lethal weaponry → convergence with chemistry for incapacitating agents)
Perspectives on the BW threat

- **Use of biological and toxin weapons has so far been extremely rare**
 - Since 1975, > 100 persons have been killed through deliberate disease
 - Most cases involved toxins
 - Most cases were criminal in nature
 - Major terrorist BTW programmes have been total failures (Rajneesh Cult; Aum Shinrikyo)
 - However, anthrax letters (USA, 2001) demonstrate the potential for low-casualty — high-impact events
 - Most bioterror events do not involve actual agents (hoaxes)

- **We have arrived in a post-proliferation stage**
 - Biotechnology (equipment, processes, products, knowledge) has become universal
 - Developing countries (Cuba, India, Indonesia, Iran, Malaysia, Pakistan, etc.) have become original sources of innovation and, in some cases, technology exports
Nature poses the greatest challenge

- **Infectious diseases are responsible for**
 - > 13 million deaths annually (≈ number of fatalities in the Twin Towers attacks on 9/11 every two hours)
 - ¼ of all deaths worldwide
 - ½ of all deaths in developing countries

- **1918: Spanish Flu** caused more fatalities worldwide than World War 1

- **Emerging diseases**: SARS; West Nile Virus; Avian flu (H5N1 and H7N9), Zika

- **AIDS in Africa**: threat to social fabric of societies

- **Ebola in West Africa**
 - Pointed to shortcomings in international assistance
 - Impacted on consideration of implementation of BWC Article VII

- **Economic impact of non-human disease outbreaks**:
 - Swine Fever outbreaks in Taiwan (1994 – 2001)
 - Foot and Mouth Disease outbreak in the UK (2001)
Potential for future weapon development

• **Biology and biotechnology allow for the manipulation of disease on the sub-cellular level (genes, biochemical processes, etc.)**
 - May make the effects of biological agents more controllable
 - May produce agents with higher infectivity or ability to overcome medical defences

• **Interference with the natural immune system rather than dissemination of pathogen may become new mode of attack**

• **Improvements in analytical and production processes:**
 - Higher quality & higher quantities in smaller units
 - Technologies become common place (classroom equipment; bio-hacker laboratories)

• **Possible application of synthetic biology and nanotechnology in agent design or dissemination technology, as well as in defence, protection and prophylaxis**

• **May contribute to novel ways of agent dissemination**
 - Aerosol techniques
 - Targeting of specific genes
Preventing biological weapons

• **Logical point of entry: weapons and their application**
 • However, treaties only govern inter-state behaviour
 • Biological warfare (states) / terrorism / crime
 → need for domestic (criminal, penal) legislation
 • *Prevention* of terrorism:
 → also responsibility of the individual

• **Possible additional points of entry**
 • Prevention of disease (irrespective of origin of outbreak)
 • Preserving biology and biotechnology for peaceful purposes (societal advancement, economic development, health security, food security, etc.)
 • Environmental security (impact of accidental or purposeful introduction of organisms in new biotopes or of modified organisms)
Towards a multi-layered & multi-sectorial governance model?

- **Weapon control**
 - Multilateral agreements (Geneva protocol, BTWC, CWC)
 - Proliferation prevention arrangements (Australia Group, PSI, Global Partnership, etc.)
 - UN agencies: UNSC, UNODA, 1540 Committee, UNEP, UNDA, etc.
 - National laws and regulations (criminal, penal, trade, safety, etc.)

- **Disease prevention**
 - WHO, FAO, OIE + their regional organisations/initiatives

- **Crime and terrorism**
 - UNSC Resolutions (1540, terrorism resolutions, etc.)
 - Interpol, Europol, etc.

- **International transfers**
 - WTO, WCO, etc.

- **Economic actors**
 - Companies (national, multinational, transnational)
 - Research institutions
 - Individuals

- **Instruments of collective & individual governance**
 - Codes of conduct; Professional codes; Ethics
 - Awareness-raising & education
 - Whistle-blower protection schemes
Contact

Jean Pascal Zanders
Political Affairs Officer
UN Office for Disarmament Affairs (Geneva Branch)
Room C.1-1, Palais des Nations, CH-1211 Geneva 10

Tel: +41 (0)22 917 4460
Mob: +41 (0)76 691 0585
Fax: +41 (0) 22 917 04 83
jzanders@unog.ch